

IDENTIFYING MOLECULAR MARKERS ASSOCIATED WITH QUALITY & QUANTIFYING THEIR POTENTIAL TO INCREASE ALFALFA VALUE

Steve Norberg, WSU; Sen Lin, WSU;
Cesar Medina- Culma, WSU, Long-Xi Yu, ARS; David
Combs, UW, Glenn Shewmaker, UI; Guojie Wang, OSU;
Don Llewellyn, WSU, Steve Fransen WSU

AGRICULTURE

YOUTH & FAMILIES

HEALTH

ECONOMY

ENVIRONMENT

ENERGY

COMMUNITIES

This research was funded by:

United States
Department of
Agriculture

National Institute of Food and Agriculture

Objectives

- 1) Determine quality at first harvest of 150 alfalfa plant introductions and 50 varieties at three locations in the PNW
- 2) Quantify the genetic diversity of alfalfa that is related to forage quality
- 3) Identify genetic areas associated with forage quality
- 4) Extend the knowledge gained

Breakdown of the 200 entries in this study

Region	Country	N
North America	Canada (21), United States (121)	138
Turkey	Turkey	21
	Afghanistan, Armenia, Georgia, Kazakhstan,	
Central Asia	Turkmenistan	14
Eastern Europe	Belarus (1), Russian Federation (8)	9
China	China	8
Central_Europe	Czech Republic, Denmark, France, Germany	4
Mediterranean	Greece, Morocco, Romania, Spain	4
Other	Australia, Japan	2

Canonical Analysis Analysis for Forage Quality based on RFQ

RFQ

TTNDFD

Avg. over Locations, Value of Hay for Protein, Energy, Fiber, Fiber Fill and Total \$ ton⁻¹ of for First Cutting 2018 and 2019.

Statistic	Hotelli	Lifelgy	Netriber	Quality	Dollar Value
Statistic	Value	Value	Value	Adjustment	ton
Maximum	\$83.25	\$135.60	\$61.48	\$103.33	\$372.91
Minimum	\$68.89	\$113.75	\$50.72	\$3.60	\$247.73
Hi-Gest - 360	\$75.83	\$127.38	\$54.42	\$82.51	\$340.14
Vernal	\$74.53	\$122.52	\$57.55	\$71.05	\$325.66

Assuming\$0.35 /lb MP, \$0.11/lb Mcal, \$0.07/lb eNDF and \$5/ton increase or decrease from 47% NDFD. Currently prices have increased by 86% for metabolizable protein, 62% for energy, and 74% for effective fiber (Progressive Dairyman, April Fry, May 7th, 2022).

Value of Optimizing Constituents

Constituent	Hi-Gest 360 Response (% of plant)	Optimum Response Received (% of plant)	Added Value (\$ Ton ⁻¹)
NDFD 48 hr	63.5	67.7	20.82
Crude Protein	23.9	25.4	5.79
Ash	10.0	9.2	2.24
Lignin	6.2	5.8	1.48
Fats	2.0	2.2	0.56
NDICP	1.0	1.3	0.24
ADICP	0.56	0.5	0.26
All constituents optimized			29.85

Correlation of Constituents NDFD 48 hr. & C. Protein

	Correlation	Correlation
Constituent	with	with Crude
	NDFD48 hr.	Protein
NDFD 48 hr.	1.000	0.66
aNDF	-0.57	-0.87
Crude Protein	0.66	1.00
Ash	0.26	0.48
Lignin	-0.79	-0.76
Fats	0.61	0.68
NDICP	0.06	0.23
ADICP	-0.31	0.04

Genetic Results

 Genome-wide association studies (GWAS) identified 126 SNP markers associated with 24 quality traits.
 Among them, most of the markers were associated with fiber digestibility and protein content.

Frontiers in Plant Science Journal Article

- Genome-Wide Association Studies Identifying Multiple Loci Associated With Alfalfa Forage Quality. Front. Plant Sci. 12:648192.
- Lin S, Medina CA, Norberg OS, Combs D, Wang G, Shewmaker G, Fransen S, Llewellyn D and Yu L-X (2021)
- doi: 10.3389/fpls.2021.648192

Yield

Yield Distribution in General

Yield Distribution in Clusters

Conclusions

- There is room for genetic improvement especially with digestibility and protein.
- Energy and Protein carry the majority of the value of hay
- Digestibility genes have been located on the chromosomes
- Yield and quality appear not to be as closely linked and improvement is possible.

